ABSTRACT #1752

TRANSPORT EXPOSURE TO TRILACICLIB, A CDK4/6 INHIBITOR, MODULATES GENE EXPRESSION IN TUMOR IMMUNE INFILTRATES AND PROMOTES A PRO-INFLAMMATORY TUMOR MICROENVIRONMENT

Anne Y. Lai, Jessica A. Sorrentino, Jay C. Strum, Patrick J. Roberts

G1 Therapeutics, Inc., Research Triangle Park, NC, USA 27709

BACKGROUND

While cancer chemotherapy-induced immunosuppression (ICI) has been shown to degrade systemic immunity, recent evidence indicates that a subset of ICI combinations may augment tumor immunity. The current study was designed to evaluate the effects of trilaciclib (TRIL), a CDK4/6 inhibitor, on the systemic and local immune response in preclinical models.

OBJECTIVES

- Evaluate the effects of trilaciclib in preclinical models using a variety of immune cell populations
- Assess the effects of trilaciclib in the murine tumor microenvironment
- Characterize the effects of transient exposure of trilaciclib on the tumor microenvironment, by examining the cellular composition, proliferation status, and gene expression of tumor immune infiltrate populations.

METHODS

- A randomized, placebo-controlled, double-blind Phase 2 trial to assess the safety and efficacy of trilaciclib or placebo as a single agent in patients with selected malignancies.
- Twenty-eight differentially expressed genes were identified, defined using a p-value < 0.05 and absolute fold-change ≥ 2.0.
- The proportion of immune checkpoint receptor (PD-L1) in the tumor microenvironment was significantly increased in TOP vs. OP.

RESULTS

- The chemotherapy and ICI combination tested are indicated in the legend of each graph. Data represent the median tumor volume.
- The proportion of immune checkpoint receptor (PD-L1) in the tumor microenvironment was significantly increased in TOP vs. OP.

SUMMARY

- Addition of trilaciclib to chemotherapy (oxaliplatin or 5-FU) and checkpoint inhibitor (PD-L1) combination enhances the anti-tumor activity in MC38 and CT26 syngeneic tumor-bearing mice.
- The chemotherapy and ICI combination tested are indicated in the legend of each graph. Data represent the median tumor volume.
- The proportion of immune checkpoint receptor (PD-L1) in the tumor microenvironment was significantly increased in TOP vs. OP.

ACKNOWLEDGMENTS

The authors acknowledge the contributions of ANNEY LAI, JESSICA A. SORRENTINO, JAY C. STRUM, and PATRICK J. ROBERTS for their support and contributions to this research. This study was supported by G1 Therapeutics, Inc., Research Triangle Park, NC, USA 27709.