Effects of trilaciclib prior to chemotherapy ± atezolizumab on T-cell activation in patients with newly diagnosed extensive-stage small cell lung cancer

Aaron D. Stevens,1 Davey Daniel,2 Jerome Goldschmidt,3 Paul A. Fields,4 Barb Banbury,4 Steven Wolfe,1 Jarrett Glass1, Janet Horton,1 Jessica A. Sorrentino1

1G1 Therapeutics, Inc., Research Triangle Park, NC, USA; 2Sarah Cannon Research Institute, Tennessee Oncology-Chattanooga, Chattanooga, TN, USA; 3Blue Ridge Cancer Care, Blacksburg, VA, USA; 4Adaptive Biotechnologies, Seattle, WA, USA

Introduction
Chemotherapy ± immunotherapy has demonstrated meaningful clinical benefit to patients (pts) with extensive-stage small cell lung cancer (ES-SCLC); however, chemotherapy-induced damage to the immune system can potentially diminish treatment efficacy. Trilaciclib (T) is an intravenous cyclin-dependent kinase 4/6 inhibitor that protects hematopoietic stem and progenitor cells from chemotherapy-induced damage (myeloprotection) and may directly enhance antitumor immunity. Here, we evaluated the immune effects of T in pts with ES-SCLC receiving T or placebo (P) prior to first-line etoposide plus carboplatin (E/C) or E/C plus atezolizumab (E/C/A) in two phase 2 clinical trials.

Methods
Genomic DNA, extracted from peripheral blood mononuclear cells (baseline and on treatment) and archival tumor tissue (baseline), was analyzed using the immunoSEQ® Assay (Adaptive Biotechnologies). T-cell receptor (TCR) β CDR3 regions were amplified and sequenced to identify and quantitate the abundance of each unique TCRβ CDR3. Clonal frequencies were compared at baseline and on treatment, and statistical differences between T and P were determined by Wilcoxon rank sum test. Antitumor response was defined as complete/partial response.

Results
In both studies, peripheral T-cell clonal expansion was greater among pts receiving T versus P. Among pts receiving E/C, those in the T/E/C group with an antitumor response had significantly more peripheral clonal expansion than P responders (median 23 vs 12 clones; \(P=0.04\)) and a greater number of tumor-associated expanded clones (\(P=0.03\)). T responders had more newly detected expanded peripheral clones compared with P responders (6 vs 1.5 clones; \(P=0.06\)) and T nonresponders (\(P=0.02\)). Increased clonal expansion in T responders was more evident after two cycles of E/C versus four, suggesting that T results in a rapid T-cell response.

Similarly, among pts receiving E/C/A, those in the T/E/C/A group with an antitumor response had significantly more peripheral clonal expansion than P responders (median 90 vs 43 clones; \(P=0.002\)) and T nonresponders (\(P=0.016\)). T responders also had more newly expanded peripheral clones compared with P responders (68 vs 11 clones; \(P=0.003\)) and T nonresponders (\(P=0.02\)). There was no increase in tumor-associated expanded clones among T responders compared to P responders, possibly due to the time point at which clonal expansion was assessed (after four cycles) or the addition of atezolizumab. Associations between peripheral and tumor-associated clonal expansion and survival will be presented.
Conclusions
The data suggest that, among pts treated with T/E/C or T/E/C/A, increased clonal expansion is associated with clinical response, indicating that T may enhance antitumor immunity in pts with ES-SCLC treated with chemotherapy.

Character count not including spaces: 2552 (Maximum 2600, including abstract body, title, and tables [not authors]).